CHARNOCK INITIAL REGIONAL RESPONSE ACTIVITIES (CIRRA) Charnock Sub-Basin; Los Angeles, California Task 14 Interim Restoration Measures

Analysis of the Performance of the Sepulveda-Venice Subregional Groundwater Remediation Systems

Submitted to:

California Regional Water Quality Control Board, Los Angeles Region

> U.S. Environmental Protection Agency, Region IX

> > On behalf of:

Shell Oil Company Shell Oil Products Company Equilon Enterprises LLC

Prepared by:

ENVIRON Corporation Emeryville, California

> January 7, 2002 03-8980O

TABLE OF CONTENTS

1.0	Introd	luction	1-1					
		eptual Model of Historic Gasoline Migrationdrogeology of the Sepulveda-Venice Subregion						
2.2		oric Groundwater Remediation Activities						
2.3		oline Constituent Concentrations in Groundwater						
2.4		Characterization of Gasoline Residuum in the Sepulveda-Venice Subregion						
2.5	Sub							
3.0	Predictive Models of MTBE Dissolution							
4.0	Estima	ation of Pore Volume Flushing in the Sepulveda-Venice Subregion	4-1					
4.1		ceptual Approach						
4.2		undwater Flushing Scenarios						
4.3	Esti	mation of Pore Volume Flushing	4-3					
5.0	Analys	sis and Discussion	5-1					
6.0	Refere	ences	6-1					
		LIST OF TABLES						
Table :	2-1	Summary of Core Analysis Results from B-22A						
Table :	2-2	Soil Sampling Results from MW-22S						
Table :	2-3	Groundwater Sampling Results from MW-22S						
Table 4	4- 1	Remedial Pumping Rates from Sepulveda-Venice Sub-Region Through 20	001					
Table 4-2		Assumed Pumping Rates for Sepulveda-Venice Remedial Wells for 2002-201						
Table 5-1		Pore Volumes Flushed at Intersection of I-405 and Venice Boulevard by Janu 2010						
		LIST OF FIGURES						
Figure 1-1		Location of Extraction Wells in Sepulveda-Venice Sub-Region						
Figure		Top of Shallow Aquitard						
Figure		Potentiometric Surface Map – Shallow Aquifer, April 2001						
Figure		Potentiometric Surface Map – Upper Silverado Aquifer, April 2001						
Figure		Third Quarter, 2001 MTBE and TPH Concentration – Shallow Aquifer						
Figure		Third Quarter, 2001 MTBE and TPH Concentration – Upper Silverado Aq	uifer					
Figure		Abrams Shell Site Radius of Influence for SVE Wells	•					
Figure 3-1		Dissolution Curves From a Model Gasoline in Soil						

LIST OF FIGURES (cont.)

	Alterna	ative	1A1 (Nom	inal S-V	Pumping	g)		
Figure	4-1	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2002
Figure	4-2	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2005
Figure	4-3	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			1A1 (East					
Figure								1-Jan-2005
Figure	4-5	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			1A1 (West		•	*		
Figure						-	_	1-Jan-2005
Figure	4-7	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			1A1 (High					
Figure						-	_	1-Jan-2005
Figure	4-9	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			led Respon					
Figure						-	_	1-Jan-2002
Figure						-	_	1-Jan-2005
Figure	4-12	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			led Respoi					
Figure								1-Jan-2005
Figure	4-14	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			led Respon					
Figure								1-Jan-2005
Figure	4-16	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			led Respon					
Figure								1-Jan-2005
Figure	4-18	Pore	Volumes F	Flushed in	Shallow	Aquifer	Through	1-Jan-2010
			led Respon		,			· 0/
Figure								1-Jan-2002
Figure								1-Jan-2005
Figure	4-21	Pore	Volumes F	Flushed in	Upper S	ilverado	Through	1-Jan-2010

LIST OF APPENDICES

Appendix A Dissolution of MTBE From a Residually Trapped Gasoline Source, A Summary of Research Results by William G. Rixey and Sushrut Joshi, University of Houston

1.0 INTRODUCTION

This report has been prepared by ENVIRON International Corporation on behalf of Shell Oil Company, Shell Oil Products Company, and Equilon Enterprises LLC (Shell) in partial fulfillment of the work required by Task 14 of Attachment A-Scope of Work (SOW) to the Los Angeles Regional Water Quality Control Board (LARWQCB) and the United States Environmental Protection Agency (USEPA) (herein collectively referred to as the "Agencies") under Stipulated Agreement No. 00-064 and the Administrative Order on Consent, USEPA Docket No. RCRA 7003-09-2000-0003 (SA/AOC). The scope of the analyses presented in this report has been further defined in a letter to Shell from the Agencies dated August 13, 2001, and a letter of reply from ENVIRON dated September 10, 2001.

The purpose of the analyses presented in this report is to evaluate the effectiveness of the current ground water remediation systems operated by Shell and Exxon-Mobil in reducing the mass of gasoline residuum¹ and related soluble gasoline constituents, which have affected ground water quality in the Sepulveda-Venice subregion of the Charnock Sub-Basin. Based on these analyses, a forecast of the future progress in further reducing constituent concentrations in the Shallow and Upper Silverado aquifers is presented.

-

¹ Gasoline residuum is residual non-aqueous phase gasoline trapped in the pores of saturated soils below the water table.